Analysis of the Tracer Diffusion Phenomena through Cracks in the Porous Media by Means of X-Ray CT

نویسنده

  • Akira Sato
چکیده

The migration process of contamination materials in the porous rock mass was visualized and analyzed by X-ray CT image data. In this study, Kimachi sandstone, which had approximately 26% porosity, was used as a rock sample. Here two cases of diffusion phenomena were analyzed. One is the case that solute diffuses into the porous rock mass from the crack surfaces, and it simulates the contamination process of rock mass. Another is the case that the solute diffuses out of the porous rock mass, and it simulates the process that the contamination materials spread from highly contaminated sources. It was found that the diffusion phenomena were clearly visualized by X-ray CT method. By introducing the parameter, coefficient of tracer density increment α, quantitative analysis of tracer density became possible, and the relation between the density distribution of tracer and the crack apertures and the relation between the density distribution and porosity distribution became clear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Photon Spectra on the Sensitivity of Polymer Gel Dosimetry by X-Ray Computed Tomography

Introduction: The purpose of the current study was to investigate the effect of X-ray spectra on the sensitivity of a polymer gel dosimeter imaged with a conventional computed tomography (CT) scanner. Material and Methods: The whole process of CT imaging of an irradiated polymer gel was simulated by MCNPX Monte Carlo (MC) code. The imaging of polyacrylamide gel was accomplished by means of a co...

متن کامل

Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis

In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...

متن کامل

Study of Two Phase Fluid Flow in Water Wet Reservoir Rocks by Using X-Ray In situ Saturation Monitoring

Displacement of oil and water in porous media of reservoir rocks is described by relative                      permeability curves, which are important input data for reservoir performance simulation and drive mechanism studies. Many core studies, such as multiphase relative permeability, capillary pressure and saturation exponent determination, depend on the volume fractions of multiphase flui...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

X-Ray in-situ saturation monitoring, an aid to study relative permeability in water-wet carbonate rocks

The simultaneous flow of oil and water in porous media is described by relative permeability curves, mainly derived from laboratory experiments. Relative permeability is of paramount importance in predicting reservoir production performance and drive mechanisms and its value depends largely on the volume fraction of fluids present in the test samples. Nowadays X-ray scanners are one of the most...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013